| 12 | | | PART A: Introduc | tion | | | | |-----------------------------|--|--|--|--------------------------|---|--------------------|--| | Progra | m: Under Graduate | Class: | B.Sc. Year: F | irst Year | Session: 2025-26 | | | | | | 5 | Subject: Computer S | cience | | | | | 1. | Course Code | | | | | | | | 2. | Course Title | | C-1(TH): Compute | r System A | rchitecture | | | | 3. | Elective/ Vocational | | Core Course | | | | | | 4. | Pre-Requisite (if any) | To study this course, Mathematics of 12 th standard is desirable. | | | | | | | 5. Course Learning Outcomes | | es | On completion of this course, learners will be able to: | | | | | | | (CLO) | | Understand (Level-2) the basic structure, operation and
characteristics of digital computer; | | | | | | | | | Design (Level-6) simple combinational digital circuits based on
given parameters; | | | | | | | | | 3. Understand (Level-2) the working of arithmetic and logic unit a well as the concept of pipelining; | | | | | | | | | 4. Summarize (<i>Level-2</i>) the hierarchical memory system including cache memories and virtual memory; | | | | | | | | | 5. Understand (<i>Level-2</i>) the concept and advantages of parallelism threading, multiprocessors and multi core processors; | | | | | | | | | 6. Identify (Level-2) the contributions Indians in the field of computer architecture and related technologies. | | | | | | 6. | Credit Value | | | Level of Bloor | n's Taxonomy is mentioned | in the bracket | | | 7. | | 5 | Theory -4 Credits | 11' D | | | | | 7. | Total Marks | DAD | Max. Marks: 30+70 | | assing Marks: 35 | | | | | No. o | | T B: Content of the | FOR SHOWING COLUMN | • | | | | | NO. 0 | | es (in hours per week) | • | week | | | | Iodule | | | tal No. of Lectures: 6 | U Hrs. | | | | | | | | pics | | | No. of
Lectures | | | Ι | Ancient Indian Contributions to Mathematics & Computation, Pingala's Binary System, Sanskrit Logic in Computing: The Nyaya and Mimamsa schools of Indian philosophy of formal logic systems. | | | | | 12 | | | | Vedic Mathematics in Computing, Vedic methods like Nikhilam Sutra and Urdhva-
Tiryagbhyam Parallel Computing in Ancient Indian Architecture, comparison of stepwise
computational techniques in Vedic astronomy with pipelining concepts in CPU architecture.
The Sulba Sutras (ancient geometric texts) and optimized resource allocation in parallel
computing models. | | | | | | | | | Fundamentals of Digital Representation, Floating-Foodes. | al Electronic Electronic Rep | tronics: Data Typoresentation, Binary a | es, Compl
and other C | ements, Fixed-Point odes, Error Detection | | | | | Logic Gates, Boolean Alg
Circuits, simple combination | ebra, Ma | ap Simplification, Conit design problems. | ombinationa | l Circuits, Sequential | | | Shirolave | | Suggested activities for experiential learning: | | |-------|---|----| | 2 | (1) Exploring Vedic numerical techniques, | | | 18.30 | (2) Simulating logic gates, | | | | (3) Verifying logic gates through truth tables. | | | | (3) <u>IKS-Based Panel Discussion</u> : Debate on how Nyaya and Mimamsa logic principles are similar to modern Boolean logic. | | | | (4) <u>Research-Based Assignment:</u> Compare Vedic mathematical techniques with modern | | | | computational algorithms. | | | II | Circuits: Adder, Subtractor, Multiplexer, Demultiplexer, Decoders, Encoders, Flip-Flops, Registers, Counters. | 08 | | | Basic Computer Organization: Instruction codes, Computer Registers, | | | | Computer Instructions, Timing & Control, Instruction Cycles, Memory Reference Instruction, Input - Output & Interrupts, Complete Computer Description & Design of Basic Computer. | | | | Logic circuits, computer architecture, and the influence of Indian culture and history on technological advancements. | | | | Suggested activities for experiential learning: | | | | (1) Designing combinational circuits, | | | | (2) Role Play: Simulate interrupt handling for I/O operations. | | | | (3) <u>Circuit Design Workshop:</u> Hands-on session on designing adders and multiplexers. | | | | (4) <u>Simulation Activity:</u> Use simulation software to design basic combinational circuits. | | | III | <i>Instructions:</i> Instruction formats, Addressing modes, Instruction codes, Machine language, Assembly language. | 10 | | | Register Transfer and Micro operations: Register Transfer Language, Register Transfer, Bus & Memory Transfer, Arithmetic Micro operations, Logic Micro-operations, Shift Micro-operations. | | | | Indian knowledge systems (such as Vedic mathematics, Sanskrit linguistic structures, and historical computing concepts) intersect with modern computational concepts like instruction formats, machine languages, and micro-operations. ancient computational methods, symbolic languages, and systems of transfer and transformation of knowledge. | | | | Panini's Ashtadhyayi and Formal Language Structure: Earliest known grammar-based rule system similar to instruction set architecture. | | | | Suggested activities for experiential learning: | | | | (1) Categorize instructions into different formats and know the relationship between opcodes, operands, and addressing modes, | | | | (2) Understand how processors access operands in memory,(3) Comparative Analysis: Students explore Panini's rule-based grammar and compare it | | | | with modern instruction set design. | | | | (4) Coding Exercise: Simulate a simple CPU instruction execution using a high-level | | | | programming language. | | | IV | Processor and Control Unit: Hardwired vs. Micro programmed, Control Unit, General Register Organization, Stack Organization, Instruction Format, Data Transfer & | 10 | | | Manipulation, Program Control, Introductory concept of RISC, CISC, advantages and disadvantages of both. | | | | Pipelining: Concept of pipelining, introduction to pipelined data path and control Handling, Data hazards & Control hazards. | | Shrivataix | | Suggested activities for experiential learning: | | |----|---|----| | 3 | (1) Presentation on CPU pipeline execution. | | | | (2) Hardware vs. Microprogrammed Control Debate: Pros and cons of both techniques. | | | | (3) Build Your Own CPU Model: Group project designing a simplified processor. | | | | (4) Case Study on Modern CPUs: Analyze how modern processors handle instruction | | | | execution. | | | | 1/0 0 | | | V | I/O Systems and Memory: Peripheral Devices, I/O Interface, Data Transfer Schemes - | 10 | | | Program Control, Interrupt, DMA Transfer, I/O Processor. | | | | Memory Hierarchy, Processor vs. Memory Speed, High-Speed Memories, Main memory, | | | | Auxiliary memory, Cache Memory, Associative Memory, Interleaving, Virtual Memory, | | | | Memory Management. | | | | Ancient Manuscript Storage (Nalanda, Takshashila Libraries): Similarity to hierarchical | | | | memory and indexing methods. | | | | Vedic Indexing and Categorization: Conceptually linked to associative and cache memory. | | | | Suggested activities for experiential learning: | | | | (1) Research Assignment: Compare manuscript storage methods with modern hierarchical | | | | memory. | | | | (2) Cache Memory Simulation: Hands-on activity to understand cache memory replacement | | | | policies. | | | | (3) Field Visit (if possible): Visit a digital archive/library to understand memory | | | | organization. | | | | (4) <u>Hands-on with Virtual Memory:</u> Implement paging in an OS. | | | VI | Parallelism: Meaning, types of parallelism, introduction to Instruction level-parallelism, | 8 | | | Parallel processing challenges, Applications. | 0 | | | Flynn's classification: Introduction to SISD, SIMD, MISD, MIMD Hardware | | | | Multithreading: Introduction, types, advantages and applications. | | | | | | | | Multicore processors: Introduction, advantages, difference from multiprocessor. | | | | Parallel Computation in Indian Astronomy: Aryabhata and Bhaskara II's models of planetary motion involve computations similar to parallel processing. | | | | Suggested activities for experiential learning: | | | | | | | | (1) Case study and quiz based on parallel processing, | | | | (2) Presentation on CPU pipeline execution | | | | (3) Comparative Analysis: Explore ancient Indian parallel calculations vs. modern parallel | | | | | | | | processing. | | | | processing. (4) <u>Multithreading Workshop:</u> Implement parallelism using OpenMP or CUDA. | | | | processing. | | | | processing. (4) <u>Multithreading Workshop:</u> Implement parallelism using OpenMP or CUDA. | | | | processing. (4) <u>Multithreading Workshop:</u> Implement parallelism using OpenMP or CUDA. | | Showslair VII Indian contributions: Contributions of reputed scientists of Indian origin - 1 Dr. Vinod Dham — Father of Intel Pentium Processor, Dr. Ajay Bhat — Co-Inventor of USB Technology, Dr. Vinod Khosla —Cofounder of Sun Microsystems, Dr. Vijay P Bhatkar —Architect of India's national initiative in supercomputing, and many others. Parallel Computing projects of India — PARAM, ANUPAM, FLOSOLVER, CHIPPS etc., other relevant contributors and contributions. ## Suggested activities for experiential learning: - (1) Research on Indian contributions to computing, - (2) Research on supercomputers in India - (3) Documentary Screening: Films on India's supercomputing projects. - (4) Expert Talk: Invite an Indian computing expert for a guest lecture. - (5) Group Research Project: Prepare case studies on Indian innovators in computing. - (6) <u>Coding Competition:</u> Solve real-world problems inspired by PARAM's computational models. Shrivstave ## PART C: Learning Resources # Textbooks, Reference Books, Other Resources ### Suggested Readings: - o M.Morris Mano, "Computer System Architecture", PHI. - William Stalling, "Computer Organization & Architecture", Pearson Education Asia. - o V. Carl Hamacher, "Computer Organization", TMH - o Tannenbaum, "Structured Computer Organization", PHI. - Vedic Mathematics by Bharati Krishna Tirtha - o Shukla, K. S. (1976). Aryabhata and His Work. - o Joseph, G. G. (1991). The Crest of the Peacock: Non-European Roots of Mathematics. - o Pingree, D. (1978). Mathematical Astronomy in India. - o Staal, F. (2006). The Science of Language and Logic in India. - o Kiparsky, P. (2009). Panini as a Formalist. - o Cardona, G. (1976). Panini: A Survey of Research. - o Balasubramaniam, R. (2009). Knowledge Management in Ancient India. - o Rajaraman, V. (2009). Computers and Information Technology. - Bhatkar, V. (2016). Supercomputing in India. - o Narasimhan, R. (1990). India's IT Revolution. ## Suggestive digital platform web links: https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=fBYckQKJvP3a/8Vd3L08tQ== https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=uUIVj2W71X+8mppiIHe0+A== https://www.yout-ube.com/watch?v=4TzMyXmzL8M https://nptel.ac.in/courses/1 06/106/ 106106166/ https://nptel.ac.in/courses/1 06/106/ 106106134/ #### Suggested equivalent online courses: https://nptel.ac.in/courses/106/1 05/ 106105163/ | Part | D: Assessment and Evaluation | | |--|--|-----------------| | Suggested Continuous Evaluation | on Methods: | • | | Maximum Marks: | | | | Continuous Comprehensive Evalu | nation (CCE): 30 Marks | | | University Exam (UE): | 70 Marks | | | Internal Assessment:
Continuous Comprehensive
Evaluation (CCE) | Class Test
Assignment/Presentation | Total Marks: 30 | | External Assessment:
University Exam (UE)
Time: 03.00 Hours | Section (A): Objective type
Section (B): Short Questions
Section (C): Long Questions | Total Marks: 70 | Ahrivalouse | | | | | troduction | | | | |---------|---|---|--|--|--|---|-------------------------------| | Program | m: Under Graduate | Class: I | B.Sc. | Year: First | Year | Session: 20 | 25-26 | | | | Subj | ject: Com | puter Science | | | | | 1. | Course Code | | | at. | | | | | 2. | Course Title | | C-1(PR): | Computer Syst | em Archi | tecture (Lab) | | | 3. | Course Type
(Core Course/Elective/Control Elective/Vocational | Generic | Core Course | | | | | | 4. | Pre-Requisite (if any) | | To study this course, Mathematics of 12 th standard is desirable. | | | | | | 5. | Course Learning Outcomes | | On comp | oletion of this co | ourse, lear | ners will be ab | le to: | | | | | 3. Imple code 4. Designates 5. Designates | ement (Level-3)
conversions;
gn (Level-6) half | Binary-to and full a | -Gray, Gray-to
adder circuit using
flip flops and v | -Binary ng basic rerify the | | 6. | Credit Value | | Practical - 2 Credits | | | | | | 7. | Total Marks | | Max. Marks: 100 Min. Passing Marks: 35 | | | | 5 | | | | PART | B: Conte | nt of the Cours | e | | | | | No. of La | ab. Practica | al (in hour | rs per week): 2 H | Irs. per w | eek | | | | | Total No | o. of Labs | : 60 Hrs. | | 706. 11. | | | | Suggestive list of Practical | | | | No. of Labs. | | | | | | ven binary
rify NANI
lder using bilder using bilder | number to
D as Univerbasic gate
basic gate | o Gray code using I gate using I s and verify its to | g IC 7486
C 7400.
ruth table.
truth table | | | | | NOR). 7. To verify truth table of 4 8. To design and construct 1 9. To design and construct 1 10. To verify De-Morgan's T | | | o using gates and | | | | ## PART C: Learning Resources #### Textbooks, Reference Books, Other Resources ### Suggested Readings: - o M.Morris Mano, "Computer System Architecture", PHI. - o William Stalling, "Computer Organization & Architecture", Pearson Education Asia. - o V. Carl Hamacher, "Computer Organization", TMH - o Tannenbaum, "Structured Computer Organization", PHI. ## Suggestive digital platform web links: https://www.yout-ube.com/watch?v=4TzMyXmzL8M https://nptel.ac.in/courses/106/106/106106166/ https://nptel.ac.in/courses/106/106/106106134/ ## Suggested equivalent online courses: https://nptel.ac.in/courses/106/105/106105163/ #### PART D: Assessment and Evaluation ## **Suggested Continuous Evaluation Methods:** | Internal Assessment | Marks | External Assessment | Marks | |--|-------|---|-------| | Class Interaction/Quiz | | Viva Voce on Practical (20 marks) | | | Attendance | | Practical Record File (20 marks) | | | Assignments (Charts/Model/Seminars /
Technology Dissemination/ Excursion/
Lab visit/ Industrial Visit) | NIL | Table Work / Exercise Assigned (60 marks) | 100 | | | | Total Marks: 100 | | Prof. Navita Shrivastava Chairman Board of Studies